Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Commun ; 14(1): 3470, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340004

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repetitive head impacts (RHI), but the components of RHI exposure underlying this relationship are unclear. We create a position exposure matrix (PEM), composed of American football helmet sensor data, summarized from literature review by player position and level of play. Using this PEM, we estimate measures of lifetime RHI exposure for a separate cohort of 631 football playing brain donors. Separate models examine the relationship between CTE pathology and players' concussion count, athletic positions, years of football, and PEM-derived measures, including estimated cumulative head impacts, linear accelerations, and rotational accelerations. Only duration of play and PEM-derived measures are significantly associated with CTE pathology. Models incorporating cumulative linear or rotational acceleration have better model fit and are better predictors of CTE pathology than duration of play or cumulative head impacts alone. These findings implicate cumulative head impact intensity in CTE pathogenesis.


Subject(s)
Brain Concussion , Chronic Traumatic Encephalopathy , Football , Male , Humans , Chronic Traumatic Encephalopathy/etiology , Chronic Traumatic Encephalopathy/pathology , Brain Concussion/epidemiology , Brain/pathology , Accelerometry
2.
J Neurotrauma ; 40(3-4): 309-317, 2023 02.
Article in English | MEDLINE | ID: mdl-36324216

ABSTRACT

Exposure to repetitive head impacts (RHI) has been associated with long-term disturbances in cognition, mood, and neurobehavioral dysregulation, and reflected in neuroimaging. Distinct patterns of changes in quantitative features of the brain electrical activity (quantitative electroencephalogram [qEEG]) have been demonstrated to be sensitive to brain changes seen in neurodegenerative disorders and in traumatic brain injuries (TBI). While these qEEG biomarkers are highly sensitive at time of injury, the long-term effects of exposure to RHI on brain electrical activity are relatively unexplored. Ten minutes of eyes closed resting EEG data were collected from a frontal and frontotemporal electrode montage (BrainScope Food and Drug Administration-cleared EEG acquisition device), as well as assessments of neuropsychiatric function and age of first exposure (AFE) to American football. A machine learning methodology was used to derive a qEEG-based algorithm to discriminate former National Football League (NFL) players (n = 87, 55.40 ± 7.98 years old) from same-age men without history of RHI (n = 68, 54.94 ± 7.63 years old), and a second algorithm to discriminate former players with AFE <12 years (n = 33) from AFE ≥12 years (n = 54). The algorithm separating NFL retirees from controls had a specificity = 80%, a sensitivity = 60%, and an area under curve (AUC) = 0.75. Within the NFL population, the algorithm separating AFE <12 from AFE ≥12 resulted in a sensitivity = 76%, a specificity = 52%, and an AUC = 0.72. The presence of a profile of EEG abnormalities in the NFL retirees and in those with younger AFE includes features associated with neurodegeneration and the disruption of neuronal transmission between regions. These results support the long-term consequences of RHI and the potential of EEG as a biomarker of persistent changes in brain function.


Subject(s)
Brain Injuries, Traumatic , Football , Neurodegenerative Diseases , Soccer , Male , Humans , Middle Aged , Football/injuries , Brain/diagnostic imaging
3.
JAMA Neurol ; 79(8): 787-796, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35759276

ABSTRACT

Importance: Repetitive head impact (RHI) exposure is the chief risk factor for chronic traumatic encephalopathy (CTE). However, the occurrence and severity of CTE varies widely among those with similar RHI exposure. Limited evidence suggests that the APOEε4 allele may confer risk for CTE, but previous studies were small with limited scope. Objective: To test the association between APOE genotype and CTE neuropathology and related endophenotypes. Design, Setting, and Participants: This cross-sectional genetic association study analyzed brain donors from February 2008 to August 2019 from the Veterans Affairs-Boston University-Concussion Legacy Foundation Brain Bank. All donors had exposure to RHI from contact sports or military service. All eligible donors were included. Analysis took place between June 2020 and April 2022. Exposures: One or more APOEε4 or APOEε2 alleles. Main Outcomes and Measures: CTE neuropathological status, CTE stage (0-IV), semiquantitative phosphorylated tau (p-tau) burden in 11 brain regions (0-3), quantitative p-tau burden in the dorsolateral frontal lobe (log-transformed AT8+ pixel count per mm2), and dementia. Results: Of 364 consecutive brain donors (100% male; 53 [14.6%] self-identified as Black and 311 [85.4%] as White; median [IQR] age, 65 [47-77] years) 20 years or older, there were 294 individuals with CTE and 70 controls. Among donors older than 65 years, APOEε4 status was significantly associated with CTE stage (odds ratio [OR], 2.34 [95% CI, 1.30-4.20]; false discovery rate [FDR]-corrected P = .01) and quantitative p-tau burden in the dorsolateral frontal lobe (ß, 1.39 [95% CI, 0.83-1.94]; FDR-corrected P = 2.37 × 10-5). There was a nonsignificant association between APOEε4 status and dementia (OR, 2.64 [95% CI, 1.06-6.61]; FDR-corrected P = .08). Across 11 brain regions, significant associations were observed for semiquantitative p-tau burden in the frontal and parietal cortices, amygdala, and entorhinal cortex (OR range, 2.45-3.26). Among football players, the APOEε4 association size for CTE stage was similar to playing more than 7 years of football. Associations were significantly larger in the older half of the sample. There was no significant association for CTE status. Association sizes were similar when donors with an Alzheimer disease neuropathological diagnosis were excluded and were reduced but remained significant after adjusting for neuritic and diffuse amyloid plaques. No associations were observed for APOEε2 status. Models were adjusted for age at death and race. Conclusions and Relevance: APOEε4 may confer increased risk for CTE-related neuropathological and clinical outcomes among older individuals with RHI exposure. Further work is required to validate these findings in an independent sample.


Subject(s)
Alzheimer Disease , Brain Concussion , Chronic Traumatic Encephalopathy , Football , Aged , Alzheimer Disease/pathology , Apolipoproteins E/genetics , Brain/pathology , Brain Concussion/complications , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/genetics , Cross-Sectional Studies , Genotype , Humans , Male , Middle Aged , tau Proteins/metabolism
4.
J Alzheimers Dis ; 85(2): 675-689, 2022.
Article in English | MEDLINE | ID: mdl-34864657

ABSTRACT

BACKGROUND: Repetitive head impacts (RHI) from contact sports have been associated with cognitive and neuropsychiatric disorders. However, not all individuals exposed to RHI develop such disorders. This may be explained by the reserve hypothesis. It remains unclear if the reserve hypothesis accounts for the heterogenous symptom presentation in RHI-exposed individuals. Moreover, optimal measurement of reserve in this population is unclear and likely unique from non-athlete populations. OBJECTIVE: We examined the association between metrics of reserve and cognitive and neuropsychiatric functioning in 89 symptomatic former National Football League players. METHODS: Individual-level proxies (e.g., education) defined reserve. We additionally quantified reserve as remaining residual variance in 1) episodic memory and 2) executive functioning performance, after accounting for demographics and brain pathology. Associations between reserve metrics and cognitive and neuropsychiatric functioning were examined. RESULTS: Higher reading ability was associated with better attention/information processing (ß=0.25; 95% CI, 0.05-0.46), episodic memory (ß=0.27; 95% CI, 0.06-0.48), semantic and phonemic fluency (ß=0.24; 95% CI, 0.02-0.46; ß=0.38; 95% CI, 0.17-0.59), and behavioral regulation (ß=-0.26; 95% CI, -0.48, -0.03) performance. There were no effects for other individual-level proxies. Residual episodic memory variance was associated with better attention/information processing (ß=0.45; 95% CI, 0.25, 0.65), executive functioning (ß=0.36; 95% CI, 0.15, 0.57), and semantic fluency (ß=0.38; 95% CI, 0.17, 0.59) performance. Residual executive functioning variance was associated with better attention/information processing (ß=0.44; 95% CI, 0.24, 0.64) and episodic memory (ß=0.37; 95% CI, 0.16, 0.58) performance. CONCLUSION: Traditional reserve proxies (e.g., years of education, occupational attainment) have limitations and may be unsuitable for use in elite athlete samples. Alternative approaches of reserve quantification may prove more suitable for this population.


Subject(s)
Athletes , Cognitive Reserve , Football , Attention , Brain/diagnostic imaging , Brain/pathology , Executive Function , Humans , Linear Models , Magnetic Resonance Imaging , Male , Memory, Episodic , Middle Aged
5.
J Magn Reson Imaging ; 54(6): 1819-1829, 2021 12.
Article in English | MEDLINE | ID: mdl-34137112

ABSTRACT

BACKGROUND: Exposure to repetitive head impacts (RHI) is associated with an increased risk of later-life neurobehavioral dysregulation and neurodegenerative disease. The underlying pathomechanisms are largely unknown. PURPOSE: To investigate whether RHI exposure is associated with later-life corpus callosum (CC) microstructure and whether CC microstructure is associated with plasma total tau and neuropsychological/neuropsychiatric functioning. STUDY TYPE: Retrospective cohort study. POPULATION: Seventy-five former professional American football players (age 55.2 ± 8.0 years) with cognitive, behavioral, and mood symptoms. FIELD STRENGTH/SEQUENCE: Diffusion-weighted echo-planar MRI at 3 T. ASSESSMENT: Subjects underwent diffusion MRI, venous puncture, neuropsychological testing, and completed self-report measures of neurobehavioral dysregulation. RHI exposure was assessed using the Cumulative Head Impact Index (CHII). Diffusion MRI measures of CC microstructure (i.e., free-water corrected fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD)) were extracted from seven segments of the CC (CC1-7), using a tractography clustering algorithm. Neuropsychological tests were selected: Trail Making Test Part A (TMT-A) and Part B (TMT-B), Controlled Oral Word Association Test (COWAT), Stroop Interference Test, and the Behavioral Regulation Index (BRI) from the Behavior Rating Inventory of Executive Function, Adult version (BRIEF-A). STATISTICAL TESTS: Diffusion MRI metrics were tested for associations with RHI exposure, plasma total tau, neuropsychological performance, and neurobehavioral dysregulation using generalized linear models for repeated measures. RESULTS: RHI exposure was associated with increased AD of CC1 (correlation coefficient (r) = 0.32, P < 0.05) and with increased plasma total tau (r = 0.34, P < 0.05). AD of the anterior CC1 was associated with increased plasma total tau (CC1: r = 0.30, P < 0.05; CC2: r = 0.29, P < 0.05). Higher trace, AD, and RD of CC1 were associated with better performance (P < 0.05) in TMT-A (trace, r = 0.33; AD, r = 0.31; and RD, r = 0.28) and TMT-B (trace, r = 0.31; RD, r = 0.34). Higher FA and AD of CC2 were associated with better performance (P < 0.05) in TMT-A (FA, r = 0.36; AD, r = 0.28), TMT-B (FA, r = 0.36; AD, r = 0.27), COWAT (FA, r = 0.36; AD, r = 0.32), and BRI (AD, r = 0.29). DATA CONCLUSION: These results suggest an association among RHI exposure, CC microstructure, plasma total tau, and clinical functioning in former professional American football players. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 1.


Subject(s)
Football , Neurodegenerative Diseases , White Matter , Corpus Callosum/diagnostic imaging , Diffusion Tensor Imaging , Humans , Middle Aged , Retrospective Studies
6.
Alzheimers Dement ; 17(10): 1709-1724, 2021 10.
Article in English | MEDLINE | ID: mdl-33826224

ABSTRACT

INTRODUCTION: Validity of the 2014 traumatic encephalopathy syndrome (TES) criteria, proposed to diagnose chronic traumatic encephalopathy (CTE) in life, has not been assessed. METHODS: A total of 336 consecutive brain donors exposed to repetitive head impacts from contact sports, military service, and/or physical violence were included. Blinded to clinical information, neuropathologists applied National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering CTE criteria. Blinded to neuropathological information, clinicians interviewed informants and reviewed medical records. An expert panel adjudicated TES diagnoses. RESULTS: A total of 309 donors were diagnosed with TES; 244 donors had CTE pathology. TES criteria demonstrated sensitivity and specificity of 0.97 and 0.21, respectively. Cognitive (odds ratio [OR] = 3.6; 95% confidence interval [CI]: 1.2-5.1), but not mood/behavior or motor symptoms, were significantly associated with CTE pathology. Having Alzheimer's disease (AD) pathology was significantly associated with reduced TES accuracy (OR = 0.27; 95% CI: 0.12-0.59). DISCUSSION: TES criteria provided good evidence to rule out, but limited evidence to rule in, CTE pathology. Requiring cognitive symptoms in revised criteria and using AD biomarkers may improve CTE pathology prediction.


Subject(s)
Autopsy , Brain Injuries, Traumatic/pathology , Brain/pathology , Chronic Traumatic Encephalopathy , Alzheimer Disease/pathology , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/pathology , Female , Humans , Male , Middle Aged
7.
Cereb Cortex ; 31(7): 3426-3434, 2021 06 10.
Article in English | MEDLINE | ID: mdl-33676369

ABSTRACT

Younger age at first exposure (AFE) to repetitive head impacts while playing American football increases the risk for later-life neuropsychological symptoms and brain alterations. However, it is not known whether AFE is associated with cortical thickness in American football players. Sixty-three former professional National Football League players (55.5 ± 7.7 years) with cognitive, behavioral, and mood symptoms underwent neuroimaging and neuropsychological testing. First, the association between cortical thickness and AFE was tested. Second, the relationship between clusters of decreased cortical thickness and verbal and visual memory, and composite measures of mood/behavior and attention/psychomotor speed was assessed. AFE was positively correlated with cortical thickness in the right superior frontal cortex (cluster-wise P value [CWP] = 0.0006), the left parietal cortex (CWP = 0.0003), and the occipital cortices (right: CWP = 0.0023; left: CWP = 0.0008). A positive correlation was found between cortical thickness of the right superior frontal cortex and verbal memory (R = 0.333, P = 0.019), and the right occipital cortex and visual memory (R = 0.360, P = 0.012). In conclusion, our results suggest an association between younger AFE and decreased cortical thickness, which in turn is associated with worse neuropsychological performance. Furthermore, an association between younger AFE and signs of neurodegeneration later in life in symptomatic former American football players seems likely.


Subject(s)
Athletes , Brain Cortical Thickness , Brain Injuries, Traumatic/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Chronic Traumatic Encephalopathy/diagnostic imaging , Football , Adult , Affect/physiology , Age Factors , Aged , Attention/physiology , Brain Injuries, Traumatic/physiopathology , Cerebral Cortex/pathology , Chronic Traumatic Encephalopathy/physiopathology , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Humans , Magnetic Resonance Imaging , Male , Memory/physiology , Middle Aged , Neuropsychological Tests , Occipital Lobe/diagnostic imaging , Occipital Lobe/pathology , Organ Size , Parietal Lobe/diagnostic imaging , Parietal Lobe/pathology , Psychomotor Performance/physiology
8.
Ann Neurol ; 87(1): 116-131, 2020 01.
Article in English | MEDLINE | ID: mdl-31589352

ABSTRACT

OBJECTIVE: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to contact and collision sports, including American football. We hypothesized a dose-response relationship between duration of football played and CTE risk and severity. METHODS: In a convenience sample of 266 deceased American football players from the Veterans Affairs-Boston University-Concussion Legacy Foundation and Framingham Heart Study Brain Banks, we estimated the association of years of football played with CTE pathological status and severity. We evaluated the ability of years played to classify CTE status using receiver operating characteristic curve analysis. Simulation analyses quantified conditions that might lead to selection bias. RESULTS: In total, 223 of 266 participants met neuropathological diagnostic criteria for CTE. More years of football played were associated with having CTE (odds ratio [OR] = 1.30 per year played, 95% confidence interval [CI] = 1.19-1.41; p = 3.8 × 10-9 ) and with CTE severity (severe vs mild; OR = 1.14 per year played, 95% CI = 1.07-1.22; p = 3.1 × 10-4 ). Participants with CTE were 1/10th as likely to have played <4.5 years (negative likelihood ratio [LR] = 0.102, 95% CI = 0.100-0.105) and were 10 times as likely to have played >14.5 years (positive LR = 10.2, 95% CI = 9.8-10.7) compared with participants without CTE. Sensitivity and specificity were maximized at 11 years played. Simulation demonstrated that years played remained adversely associated with CTE status when years played and CTE status were both related to brain bank selection across widely ranging scenarios. INTERPRETATION: The odds of CTE double every 2.6 years of football played. After accounting for brain bank selection, the magnitude of the relationship between years played and CTE status remained consistent. ANN NEUROL 2020;87:116-131.


Subject(s)
Chronic Traumatic Encephalopathy/pathology , Football/statistics & numerical data , Registries/statistics & numerical data , Aged , Brain/pathology , Case-Control Studies , Chronic Traumatic Encephalopathy/diagnosis , Humans , Male , Middle Aged , Severity of Illness Index , Single-Blind Method , Time Factors
9.
Acta Neuropathol ; 138(3): 401-413, 2019 09.
Article in English | MEDLINE | ID: mdl-31183671

ABSTRACT

Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.


Subject(s)
Athletic Injuries/pathology , Cerebral Amyloid Angiopathy/pathology , Chronic Traumatic Encephalopathy/pathology , Aged , Aged, 80 and over , Athletes , Athletic Injuries/complications , Brain/pathology , Cerebral Amyloid Angiopathy/complications , Chronic Traumatic Encephalopathy/complications , Female , Humans , Male , Sports
10.
Brain Imaging Behav ; 13(3): 725-734, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29779184

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3 T magnetic resonance imaging, we compared select limbic brain regional volumes - the amygdala, hippocampus, and cingulate gyrus - between symptomatic former National Football League (NFL) players (n = 86) and controls (n = 22). Moreover, within the group of former NFL players, we examined the relationship between those limbic structures and neurobehavioral functioning (n = 75). The former NFL group comprised eighty-six men (mean age = 55.2 ± 8.0 years) with at least 12 years of organized football experience, at least 2 years of active participation in the NFL, and self-reported declines in cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean age = 57.0 ± 6.6 years) with no history of contact-sport involvement or traumatic brain injury. All control participants provided neurobehavioral data. Compared to controls, former NFL players exhibited reduced volumes of the amygdala, hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus volume was associated with worse attention and psychomotor speed (r = 0.4 (right), r = 0.42 (left); both p < 0.001), while decreased right hippocampal volume was associated with worse visual memory (r = 0.25, p = 0.027). Reduced volumes of limbic system structures in former NFL players are associated with neurocognitive features of CTE. Volume reductions in the amygdala, hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at risk for CTE.


Subject(s)
Chronic Traumatic Encephalopathy/physiopathology , Limbic System/physiology , Amygdala/pathology , Athletes , Brain Concussion/complications , Chronic Traumatic Encephalopathy/etiology , Cognition Disorders/diagnosis , Football/injuries , Football/physiology , Gyrus Cinguli/pathology , Hippocampus/pathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurodegenerative Diseases/physiopathology
11.
Front Hum Neurosci ; 13: 440, 2019.
Article in English | MEDLINE | ID: mdl-31920598

ABSTRACT

BACKGROUND: Factors of increased prevalence among individuals with Black racial identity (e.g., cardiovascular disease, CVD) may influence the association between exposure to repetitive head impacts (RHI) from American football and later-life neurological outcomes. Here, we tested the interaction between racial identity and RHI on neurobehavioral outcomes, brain volumetric measures, and cerebrospinal fluid (CSF) total tau (t-tau), phosphorylated tau (p-tau181), and Aß1 - 42 in symptomatic former National Football League (NFL) players. METHODS: 68 symptomatic male former NFL players (ages 40-69; n = 27 Black, n = 41 White) underwent neuropsychological testing, structural MRI, and lumbar puncture. FreeSurfer derived estimated intracranial volume (eICV), gray matter volume (GMV), white matter volume (WMV), subcortical GMV, hippocampal volume, and white matter (WM) hypointensities. Multivariate generalized linear models examined the main effects of racial identity and its interaction with a cumulative head impact index (CHII) on all outcomes. Age, years of education, Wide Range Achievement Test, Fourth Edition (WRAT-4) scores, CVD risk factors, and APOEε4 were included as covariates; eICV was included for MRI models. P-values were false discovery rate adjusted. RESULTS: Compared to White former NFL players, Black participants were 4 years younger (p = 0.04), had lower WRAT-4 scores (mean difference = 8.03, p = 0.002), and a higher BMI (mean difference = 3.09, p = 0.01) and systolic blood pressure (mean difference = 8.15, p = 0.03). With regards to group differences on the basis of racial identity, compared to White former NFL players, Black participants had lower GMV (mean adjusted difference = 45649.00, p = 0.001), lower right hippocampal volume (mean adjusted difference = 271.96, p = 0.02), and higher p-tau181/t-tau ratio (mean adjusted difference = -0.25, p = 0.01). There was not a statistically significant association between the CHII with GMV, right hippocampal volume, or p-tau181/t-tau ratio. However, there was a statistically significant Race x CHII interaction for GMV (b = 2206.29, p = 0.001), right hippocampal volume (b = 12.07, p = 0.04), and p-tau181/t-tau ratio concentrations (b = -0.01, p = 0.004). CONCLUSION: Continued research on racial neurological disparities could provide insight into risk factors for long-term neurological disorders associated with American football play.

12.
Acta Neuropathol Commun ; 6(1): 115, 2018 11 04.
Article in English | MEDLINE | ID: mdl-30390709

ABSTRACT

The genetic basis of chronic traumatic encephalopathy (CTE) is poorly understood. Variation in transmembrane protein 106B (TMEM106B) has been associated with enhanced neuroinflammation during aging and with TDP-43-related neurodegenerative disease, and rs3173615, a missense coding SNP in TMEM106B, has been implicated as a functional variant in these processes. Neuroinflammation and TDP-43 pathology are prominent features in CTE. The purpose of this study was to determine whether genetic variation in TMEM106B is associated with CTE risk, pathological features, and ante-mortem dementia. Eighty-six deceased male athletes with a history of participation in American football, informant-reported Caucasian, and a positive postmortem diagnosis of CTE without comorbid neurodegenerative disease were genotyped for rs3173615. The minor allele frequency (MAF = 0.42) in participants with CTE did not differ from previously reported neurologically normal controls (MAF = 0.43). However, in a case-only analysis among CTE cases, the minor allele was associated with reduced phosphorylated tau (ptau) pathology in the dorsolateral frontal cortex (DLFC) (AT8 density, odds ratio [OR] of increasing one quartile = 0.42, 95% confidence interval [CI] 0.22-0.79, p = 0.008), reduced neuroinflammation in the DLFC (CD68 density, OR of increasing one quartile = 0.53, 95% CI 0.29-0.98, p = 0.043), and increased synaptic protein density (ß = 0.306, 95% CI 0.065-0.546, p = 0.014). Among CTE cases, TMEM106B minor allele was also associated with reduced ante-mortem dementia (OR = 0.40, 95% CI 0.16-0.99, p = 0.048), but was not associated with TDP-43 pathology. All case-only models were adjusted for age at death and duration of football play. Taken together, variation in TMEM106B may have a protective effect on CTE-related outcomes.


Subject(s)
Chronic Traumatic Encephalopathy/genetics , Chronic Traumatic Encephalopathy/pathology , Membrane Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Prefrontal Cortex/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Disks Large Homolog 4 Protein/metabolism , Football/injuries , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Prefrontal Cortex/pathology , Trauma Severity Indices , Young Adult , tau Proteins/metabolism
13.
Alzheimers Dement ; 14(9): 1159-1170, 2018 09.
Article in English | MEDLINE | ID: mdl-30049650

ABSTRACT

INTRODUCTION: Cerebrospinal fluid (CSF) protein analysis may facilitate detection and elucidate mechanisms of neurological consequences from repetitive head impacts (RHI), such as chronic traumatic encephalopathy. We examined CSF concentrations of total tau (t-tau), phosphorylated tau, and amyloid ß1-42 and their association with RHI in former National Football League (NFL) players. The role of microglial activation (using sTREM2) was examined as a pathogenic mechanism of chronic traumatic encephalopathy. METHODS: Sixty-eight former NFL players and 21 controls underwent lumbar puncture to quantify t-tau, p-tau181, amyloid ß1-42, and sTREM2 in the CSF using immunoassays. The cumulative head impact index estimated RHI. RESULTS: No between-group differences for CSF analytes emerged. In the former NFL players, the cumulative head impact index predicted higher t-tau concentrations (P = .041), and higher sTREM2 levels were associated with higher t-tau concentrations (P = .009). DISCUSSION: In this sample of former NFL players, greater RHI and increased microglial activation were associated with higher CSF t-tau concentrations.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Chronic Traumatic Encephalopathy/cerebrospinal fluid , Football/injuries , Membrane Glycoproteins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Chronic Traumatic Encephalopathy/pathology , Humans , Male , Microglia/pathology , Middle Aged , Nerve Degeneration/cerebrospinal fluid , Nerve Degeneration/pathology , Receptors, Immunologic
14.
Neuroimage Clin ; 18: 888-896, 2018.
Article in English | MEDLINE | ID: mdl-29876273

ABSTRACT

Objectives: To determine whether or not automated FreeSurfer segmentation of brain regions considered important in repetitive head trauma can be analyzed accurately without manual correction. Materials and methods: 3 T MR neuroimaging was performed with automated FreeSurfer segmentation and manual correction of 11 brain regions in former National Football League (NFL) players with neurobehavioral symptoms and in control subjects. Automated segmentation and manually-corrected volumes were compared using an intraclass correlation coefficient (ICC). Linear mixed effects regression models were also used to estimate between-group mean volume comparisons and to correlate former NFL player brain volumes with neurobehavioral factors. Results: Eighty-six former NFL players (55.2 ±â€¯8.0 years) and 22 control subjects (57.0 ±â€¯6.6 years) were evaluated. ICC was highly correlated between automated and manually-corrected corpus callosum volumes (0.911), lateral ventricular volumes (right 0.980, left 0.967), and amygdala-hippocampal complex volumes (right 0.713, left 0.731), but less correlated when amygdalae (right -0.170, left -0.090) and hippocampi (right 0.539, left 0.637) volumes were separately delineated and also less correlated for cingulate gyri volumes (right 0.639, left 0.351). Statistically significant differences between former NFL player and controls were identified in 8 of 11 regions with manual correction but in only 4 of 11 regions without such correction. Within NFL players, manually corrected brain volumes were significantly associated with 3 neurobehavioral factors, but a different set of 3 brain regions and neurobehavioral factor correlations was observed for brain region volumes segmented without manual correction. Conclusions: Automated FreeSurfer segmentation of the corpus callosum, lateral ventricles, and amygdala-hippocampus complex may be appropriate for analysis without manual correction. However, FreeSurfer segmentation of the amygdala, hippocampus, and cingulate gyrus need further manual correction prior to performing group comparisons and correlations with neurobehavioral measures.


Subject(s)
Amygdala/pathology , Hippocampus/pathology , Image Processing, Computer-Assisted , Neuroimaging , Organ Size/physiology , Adult , Aged , Brain Mapping , Football , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neuroimaging/methods
15.
AIDS Behav ; 22(4): 1201-1208, 2018 04.
Article in English | MEDLINE | ID: mdl-28815361

ABSTRACT

In the United States, an estimated 25% of men who have sex with men (MSM) have indications for receiving pre-exposure prophylaxis to prevent HIV infection (PrEP), but <4% reported PrEP use in the past 12 months. We evaluate factors associated with having heard of, willingness to use, and use of PrEP in a venue-based, time-spaced sample of 316 urban, highly insured Boston MSM in the 2014 NHBS. We found that 53.7% of respondents reported receiving usual medical care from a doctor's office or health maintenance organization, 57.6% had an indication for PrEP, 66.6% had heard of PrEP, 53.6% reported willingness to use PrEP, and 5.8% reported use of PrEP in the past 12 months. In multivariable analyses, an indication for PrEP was statistically associated with having heard of, willingness to use and use of PrEP in the past 12 months. Findings guide statewide efforts to evaluate and promote PrEP.


Subject(s)
Anti-Retroviral Agents/administration & dosage , HIV Infections/prevention & control , Health Knowledge, Attitudes, Practice , Homosexuality, Male/psychology , Patient Acceptance of Health Care , Pre-Exposure Prophylaxis/methods , Adolescent , Adult , Aged , Boston , Homosexuality, Male/statistics & numerical data , Humans , Male , Middle Aged , Urban Population , Young Adult
16.
J Neurotrauma ; 35(2): 278-285, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28990457

ABSTRACT

Thalamic atrophy has been associated with exposure to repetitive head impacts (RHI) in professional fighters. The aim of this study is to investigate whether or not age at first exposure (AFE) to RHI is associated with thalamic volume in symptomatic former National Football League (NFL) players at risk for chronic traumatic encephalopathy (CTE). Eighty-six symptomatic former NFL players (mean age = 54.9 ± 7.9 years) were included. T1-weighted data were acquired on a 3T magnetic resonance imager, and thalamic volumes were derived using FreeSurfer. Mood and behavior, psychomotor speed, and visual and verbal memory were assessed. The association between thalamic volume and AFE to playing football and to number of years playing was calculated. Decreased thalamic volume was associated with more years of play (left: p = 0.03; right: p = 0.03). Younger AFE was associated with decreased right thalamic volume (p = 0.014). This association remained significant after adjusting for total years of play. Decreased left thalamic volume was associated with worse visual memory (p = 0.014), whereas increased right thalamic volume was associated with fewer mood and behavior symptoms (p = 0.003). In our sample of symptomatic former NFL players at risk for CTE, total years of play and AFE were associated with decreased thalamic volume. The effect of AFE on right thalamic volume was almost twice as strong as the effect of total years of play. Our findings confirm previous reports of an association between thalamic volume and exposure to RHI. They suggest further that younger AFE may result in smaller thalamic volume later in life.


Subject(s)
Age Factors , Football/injuries , Head Injuries, Closed/pathology , Thalamus/pathology , Adult , Aged , Athletes , Atrophy , Humans , Magnetic Resonance Imaging , Male , Middle Aged
17.
JAMA ; 318(4): 360-370, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28742910

ABSTRACT

Importance: Players of American football may be at increased risk of long-term neurological conditions, particularly chronic traumatic encephalopathy (CTE). Objective: To determine the neuropathological and clinical features of deceased football players with CTE. Design, Setting, and Participants: Case series of 202 football players whose brains were donated for research. Neuropathological evaluations and retrospective telephone clinical assessments (including head trauma history) with informants were performed blinded. Online questionnaires ascertained athletic and military history. Exposures: Participation in American football at any level of play. Main Outcomes and Measures: Neuropathological diagnoses of neurodegenerative diseases, including CTE, based on defined diagnostic criteria; CTE neuropathological severity (stages I to IV or dichotomized into mild [stages I and II] and severe [stages III and IV]); informant-reported athletic history and, for players who died in 2014 or later, clinical presentation, including behavior, mood, and cognitive symptoms and dementia. Results: Among 202 deceased former football players (median age at death, 66 years [interquartile range, 47-76 years]), CTE was neuropathologically diagnosed in 177 players (87%; median age at death, 67 years [interquartile range, 52-77 years]; mean years of football participation, 15.1 [SD, 5.2]), including 0 of 2 pre-high school, 3 of 14 high school (21%), 48 of 53 college (91%), 9 of 14 semiprofessional (64%), 7 of 8 Canadian Football League (88%), and 110 of 111 National Football League (99%) players. Neuropathological severity of CTE was distributed across the highest level of play, with all 3 former high school players having mild pathology and the majority of former college (27 [56%]), semiprofessional (5 [56%]), and professional (101 [86%]) players having severe pathology. Among 27 participants with mild CTE pathology, 26 (96%) had behavioral or mood symptoms or both, 23 (85%) had cognitive symptoms, and 9 (33%) had signs of dementia. Among 84 participants with severe CTE pathology, 75 (89%) had behavioral or mood symptoms or both, 80 (95%) had cognitive symptoms, and 71 (85%) had signs of dementia. Conclusions and Relevance: In a convenience sample of deceased football players who donated their brains for research, a high proportion had neuropathological evidence of CTE, suggesting that CTE may be related to prior participation in football.


Subject(s)
Athletic Injuries/pathology , Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Football/injuries , Adult , Aged , Athletes , Athletic Injuries/complications , Brain Concussion/epidemiology , Cause of Death , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/etiology , Cognition Disorders/etiology , Humans , Male , Mental Disorders/etiology , Middle Aged , Severity of Illness Index , Substance-Related Disorders/etiology , United States , tau Proteins/analysis
18.
J Neurotrauma ; 34(2): 328-340, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27029716

ABSTRACT

The term "repetitive head impacts" (RHI) refers to the cumulative exposure to concussive and subconcussive events. Although RHI are believed to increase risk for later-life neurological consequences (including chronic traumatic encephalopathy), quantitative analysis of this relationship has not yet been examined because of the lack of validated tools to quantify lifetime RHI exposure. The objectives of this study were: 1) to develop a metric to quantify cumulative RHI exposure from football, which we term the "cumulative head impact index" (CHII); 2) to use the CHII to examine the association between RHI exposure and long-term clinical outcomes; and 3) to evaluate its predictive properties relative to other exposure metrics (i.e., duration of play, age of first exposure, concussion history). Participants included 93 former high school and collegiate football players who completed objective cognitive and self-reported behavioral/mood tests as part of a larger ongoing longitudinal study. Using established cutoff scores, we transformed continuous outcomes into dichotomous variables (normal vs. impaired). The CHII was computed for each participant and derived from a combination of self-reported athletic history (i.e., number of seasons, position[s], levels played), and impact frequencies reported in helmet accelerometer studies. A bivariate probit, instrumental variable model revealed a threshold dose-response relationship between the CHII and risk for later-life cognitive impairment (p < 0.0001), self-reported executive dysfunction (p < 0.0001), depression (p < 0.0001), apathy (p = 0.0161), and behavioral dysregulation (p < 0.0001). Ultimately, the CHII demonstrated greater predictive validity than other individual exposure metrics.


Subject(s)
Apathy , Brain Concussion/diagnosis , Cognitive Dysfunction/diagnosis , Depression/diagnosis , Executive Function , Football/injuries , Adult , Apathy/physiology , Brain Concussion/complications , Brain Concussion/psychology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Depression/etiology , Depression/psychology , Executive Function/physiology , Football/psychology , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Predictive Value of Tests , Recurrence , Retrospective Studies , Schools/trends , Self Report , Students/psychology , Universities/trends
19.
J Alzheimers Dis ; 51(4): 1099-109, 2016.
Article in English | MEDLINE | ID: mdl-26890775

ABSTRACT

BACKGROUND: Chronic traumatic encephalopathy (CTE) is a tauopathy associated with prior exposure to repetitive head impacts, such as those incurred through American football and other collision sports. Diagnosis is made through neuropathological examination. Many of the clinical features of CTE are common in the general population, with and without a history of head impact exposure, making clinical diagnosis difficult. As is now common in the diagnosis of other neurodegenerative disorders, such as Alzheimer's disease, there is a need for methods to diagnose CTE during life through objective biomarkers. OBJECTIVE: The aim of this study was to examine tau-positive exosomes in plasma as a potential CTE biomarker. METHODS: Subjects were 78 former National Football League (NFL) players and 16 controls. Extracellular vesicles were isolated from plasma. Fluorescent nanoparticle tracking analysis was used to determine the number of vesicles staining positive for tau. RESULTS: The NFL group had higher exosomal tau than the control group (p <  0.0001). Exosomal tau discriminated between the groups, with 82% sensitivity, 100% specificity, 100% positive predictive value, and 53% negative predictive value. Within the NFL group, higher exosomal tau was associated with worse performance on tests of memory (p = 0.0126) and psychomotor speed (p = 0.0093). CONCLUSION: These preliminary findings suggest that exosomal tau in plasma may be an accurate, noninvasive CTE biomarker.


Subject(s)
Chronic Traumatic Encephalopathy/blood , Extracellular Vesicles/metabolism , Plasma/cytology , tau Proteins/metabolism , Adult , Aged , Analysis of Variance , Case-Control Studies , Humans , Male , Middle Aged
20.
J Neurotrauma ; 32(22): 1768-76, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26200068

ABSTRACT

Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.


Subject(s)
Corpus Callosum/injuries , Corpus Callosum/pathology , Football/injuries , White Matter/injuries , White Matter/pathology , Adolescent , Adult , Age of Onset , Aged , Anisotropy , Child , Child, Preschool , Diffusion Tensor Imaging , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...